Modeling Spatial-Temporal Dynamics for Traffic Prediction
نویسندگان
چکیده
Spatial-temporal prediction has many applications such as climate forecasting and urban planning. In particular, traffic prediction has drawn increasing attention in data mining research field for the growing traffic related datasets and for its impacts in real-world applications. For example, an accurate taxi demand prediction can assist taxi companies to pre-allocate taxis to meet with commuting demands. The key challenge of traffic prediction lies in how to model the complex spatial and temporal dependencies. In this paper, we make two important observations which have not been considered by previous studies: (1) the spatial dependency between locations are dynamic; and (2) the temporal dependency follows strong periodicity but is not strictly periodic for its dynamic temporal shifting. Based on these two observations, we propose a novel Spatial-Temporal Dynamic Network (STDN) framework. In this framework, we propose a flow gating mechanism to learn the dynamic similarity between locations via traffic flow. A periodically shifted attention mechanism is designed to handle long-term periodic dependency and periodic temporal shifting. Furthermore, we extend our framework from region-based traffic prediction to traffic prediction for road intersections by using graph convolutional structure. We conduct extensive experiments on several large-scale real traffic datasets and demonstrate the effectiveness of our approach over state-of-the-art methods.
منابع مشابه
Modeling of the Relationships Between Spatio-Temporal Changes of Traffic Volume and Particulate Matter-2.5 Pollutant Concentration Based on Geographically Weighted Regression (GWR) and Inverse Distance Weighting (IDW) Model: A Case Study in Tehran M
Background and Aim: High concentrations of particulate matter-25 (PM2.5) have been the cause of the unhealthiest days in Tehran, Iran in recent years. This study was conducted with the aim of the spatio-temporal analysis of traffic volume and its relationship with PM2.5 pollutant concentrations in Tehran metropolis, Tehran during 2015-2018, using the Geographic Information System (GIS). Materi...
متن کاملDeep Multi-View Spatial-Temporal Network for Taxi Demand Prediction
Taxi demand prediction is an important building block to enabling intelligent transportation systems in a smart city. An accurate prediction model can help the city pre-allocate resources to meet travel demand and to reduce empty taxis on streets which waste energy and worsen the traffic congestion. With the increasing popularity of taxi requesting services such as Uber and Didi Chuxing (in Chi...
متن کاملSpatiotemporal Context Awareness for Urban Traffic Modeling and Prediction: Sparse Representation Based Variable Selection
Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations ...
متن کاملStatistical Traffic State Analysis in Large-scale Transportation Networks Using Locality-Preserving Non-negative Matrix Factorization
Statistical traffic data analysis is a hot topic in traffic management and control. In this field, current research progresses focus on analyzing traffic flows of individual links or local regions in a transportation network. Less attention are paid to the global view of traffic states over the entire network, which is important for modeling large-scale traffic scenes. Our aim is precisely to p...
متن کاملSpatial-Temporal Trend Modeling for Ozone Concentration in Tehran City
Fitting a suitable covariance function for the correlation structure of spatial-temporal data requires de-trending the data. In this article, some potential models for spatial-temporal trend are presented. Eventually the best model will be announced for de-trending tropospheric ozone concentration data for the city of Tehran (Capital city of Iran). By using the selected trend model, some ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018